
A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

1

A Strategy for Using BLOB Functions on Large Databases

Introduction

Alan Manifold’s BLOB functions (GetBibBlob, GetFieldRaw, GetSubField, etc.) are priceless for
people who write queries against a Voyager database, because they often provide the only way to
get at data in certain MARC fields. But if you have a large database and if you don’t use the
BLOB functions wisely, you can easily create reports that run for hours. This document will
describe a strategy for using the BLOB functions in a way that makes them practical for use with
large databases.

Is my database “large”, you ask? Well, if you have more than 800,000 bibs or so, your database is
certainly large. If you are frustrated by how slow your queries that use the BLOB functions are,
your database is large. Actually, the strategy described in this document works fine for
databases of any size. But, if your database is not large, it may not be worth your while to take
the extra steps that the strategy requires.

Libraries with databases of any size might want to look at the document, “Alternatives to the
BLOB Queries,” at http://office.ilcso.illinois.edu/secure/sql/resouces/alttoblob.pdf

A word about the conventions in this document: Each time a query is given as an example, it will
be shown in 2 ways. The design view is provided because that is the easiest way to see what is
going on. The SQL will also be provided so that you can copy the query into your own reports
file and play with it. So breath easy! No one expects you to read the SQL!

The Problem with BLOB Functions in Large Databases

The reason the BLOB functions are slow is this: They are implemented in Access on your
workstation. If you use a BLOB function on, say, all the bib records in your database, then all of
the bib records have to be brought across the network to your workstation, and then parsed out
by your workstation. Today’s workstations are powerful computing machines, but parsing
MARC records is an intensive task.

So there are 2 principles behind this strategy:

1) Use the BLOB functions on the smallest set of records that will still let your query accomplish
what you need to do.

2) Don’t put criteria on a column that is created by BLOB functions.

The first of these principles makes sense on the face of it. The second is more subtle and best
illustrated by an example. Suppose you want to find all of the MFHDs in your reference
collection that have a note in the 866 field. You might build this query:

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

2

SELECT LOCATION.LOCATION_CODE,
getfieldraw(getmfhdblob([mfhd_master].[mfhd_id]),"866",1) AS Eight66
FROM MFHD_MASTER INNER JOIN LOCATION
ON MFHD_MASTER.LOCATION_ID = LOCATION.LOCATION_ID
WHERE (((LOCATION.LOCATION_CODE)="Ref") AND
((getfieldraw(getmfhdblob([mfhd_master].[mfhd_id]),"866",1))<>" "));

You might think that Access will realize that it only has to parse the MFHDs from your reference
collection. Not so! Access is going to get all of the MFHDs in your database, bring them to your
workstation, and parse them all there to see if they meet the criterion on the 866 field.

The Strategy

The way to get around this problem is to break your query into 3 separate queries, thus:

Query 1 will create the shortest possible list of BIB_IDs, MFHD_IDs, or AUTH_IDs on which the
BLOB functions will be used. It will be a Make Table query, so the list of ID numbers will be
written into a table in the reports.mdb file on your workstation. It is a good idea to set the
Unique Values property for this query.

Query 2 will use the list of ID numbers generated by Query 1 and do the BLOB functions on just
those records. There should be no criteria in Query 2. This will be a Make Table query, so the
parsed MARC fields or subfields will be written into a table in the reports.mdb file on your
workstation.

Query 3 will pull together the information from Query 2 and whatever other fields you need.
You can include criteria on any field, including the fields that came from Query 2. You can link
to other tables to get any additional fields that you need.

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

3

A quick refresher: To change a query into a Make Table query, click the drop down arrow just to
the left of the red exclamation mark on the tool bar, select Make Table, and Access will ask you
what you want to name the table. To set the Unique Values property on Query 1, right-click on
the gray area surrounding the tables in the design pane and set Unique Values (not Unique
Records, that’s different) to Yes. If you need more clues than this the paragraph provides, try
looking up Make Table Query or Unique Values in the online Access help or in your favorite
Access book.

In the examples below, the table created by Query 1 will be called Table 1, and the table created
by Query 2 will be called Table 2. This is just to make the examples easier to read. You’ll
probably choose more meaningful names.

When your Query 3 is done, you might want to delete Table 1 and Table 2 from your
reports.mdb so it doesn’t take up room on your hard drive.

Some Thoughts on Query 1

There’s some art to figuring out how to write Query 1 so you get a nice, short list of ID numbers
(BIB_IDs, MFH_IDs, or AUTH_IDs). Sometimes you can do it by writing a query against the
table that you already know and love. Example A below is a good example of this. Sometimes
you need to search for a string in an unparsed MARC record. Examples B and C below show
this. If you’re having difficulty figuring out what to do with Query 1, take a cataloger to lunch.
You’ll be able to figure it out together. Or send a note to CARLI On Call asking for ideas.

The rest of this document is three examples of BLOB queries that use the technique we’ve been
discussing.

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

4

Example A

This is a lot like the example that already looked at on pages 1 and 2 of this document. I want to
find the serials in the reference collection that have a note in the MFHD 866 field.

Example A – Query 1

I can identify serials because the BIB_FORMAT field in the BIB_TEXT table is set to “as”. In
Query 2, I’m going to have to use the BLOB functions on the MFHDs to get the 866 field. So
here’s a query that will list the MFHD_IDs of the serials in the reference location. It’s hard to see
in design view, but I remembered to set the Unique Values property and to make this a Make
Table query. The table I’m making is called Table 1.

SELECT DISTINCT MFHD_MASTER.MFHD_ID INTO [Table 1]
FROM ((LOCATION INNER JOIN MFHD_MASTER
ON LOCATION.LOCATION_ID = MFHD_MASTER.LOCATION_ID)
INNER JOIN BIB_MFHD ON MFHD_MASTER.MFHD_ID = BIB_MFHD.MFHD_ID)
INNER JOIN BIB_TEXT ON BIB_MFHD.BIB_ID = BIB_TEXT.BIB_ID
WHERE (((LOCATION.LOCATION_CODE)="Ref")
AND ((BIB_TEXT.BIB_FORMAT)="as"));

When I run this query, if I’ve already got a Table 1, Access will ask if it’s OK to delete the old
Table 1 so a new one can be made.

When the query is done, Access will ask if it’s OK to add some number of rows to Table 1. Say
OK.

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

5

Example A – Query 2

All I need to do in this query is to use the BLOB functions to get the 866 field (if there is one) from
the MFHDs whose MFHD_IDs are now in Table 1. There might be more than one 866 field in a
MFHD, but I think I’ll just ask for the first one. And I think I want to see the indicators and the
subfield coding, so I’m going to use GetFieldRaw. I’ve remembered not to use any criteria in this
query and to Make a Table called Table 2. Notice that I’ve kept the MFHD_ID in a column. I’ll
need it in a moment.

SELECT [Table 1].MFHD_ID,
GetFieldRaw(GetMFHDBlob([mfhd_id]),"866",1) AS Eight66
INTO [Table 2]
FROM [Table 1];

When I run this query, if I’ve already got a Table 2, Access will ask if it’s OK to delete the old
Table 2 so a new one can be made.

When the query is done, Access will ask if it’s OK to add some number of rows to Table 2. Say
OK.

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

6

Example A – Query 3

Now I can start from Table 2, add any criteria that I wish, and link up the other tables that I need.
I think I’m going to sort the results by call number and include the title and author.

Notice that I’m using the MFHD_MASTER, BIB_MFHD, and BIB_TEXT tables, which I used in
Query 1 as well. I could have kept the call number, title, and author back in Query 1 and copied
them into Table 2. I didn’t do that because these fields are kind of long. I’d have copies of them
in Table 1 and Table 2, so my reports.mdb would be larger. I decided to be frugal of my hard
drive.

SELECT MFHD_MASTER.DISPLAY_CALL_NO,
[Table 2].Eight66, BIB_TEXT.TITLE, BIB_TEXT.AUTHOR
FROM (([Table 2] INNER JOIN MFHD_MASTER
ON [Table 2].MFHD_ID = MFHD_MASTER.MFHD_ID) INNER JOIN BIB_MFHD
ON MFHD_MASTER.MFHD_ID = BIB_MFHD.MFHD_ID) INNER JOIN BIB_TEXT
ON BIB_MFHD.BIB_ID = BIB_TEXT.BIB_ID
WHERE ((([Table 2].Eight66)<>" "))
ORDER BY MFHD_MASTER.NORMALIZED_CALL_NO;

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

7

Example B

I want to find any bib records that have the obsolete MARC 582 field so I can move the data to
the proper MARC field. The 582 is not indexed, so I can’t use the BIB_INDEX table to find it.

Example B – Query 1

For the first query, I’m going to try to locate the 582 tag in the record directory of the MARC bib.
To do this, I need to recall the structure of a MARC record. The record directory appears near the
beginning of each MARC record. It has an entry for each variable field in the record. The entries
consist of the 3-digit MARC tag, a 4-digit length of the variable field, and a 5-digit offset that
locates the variable field in the record.

In the Voyager BIB_DATA table, unparsed MARC bib records are split up into segments that are
up to 990 characters in length. The first segment has seqnum=1, the second has seqnum=2, etc.
A bib record that is less than 990 characters long will have a single segment with seqnum=1.
Longer MARC records will have several segments with appropriate values in seqnum. So, in my
query, a way to search near the beginning of a record is to search records with seqnum=1.

(Note: If I were using this technique on MFHDs instead of bibs, I would not use
seqnum=1 to limit my search to the first segment. MFHD segments are only 300
characters long, so it’s not unusual for the record directory to spill over into segments 2,
3, and beyond.)

Now what should I search for? I want to search for ‘582’ at least. I think I can do a little better
than that. I bet the length of my 582s will never exceed 999 characters, so the first digit of the 4-
digit length will be a zero. So I’m going to search for the string ‘5820’ anywhere in the first
segment of a MARC bib record.

Now the string ‘5820’ will certainly be present in any bib record that has a 582 tag. But it might
also be present in other places, for example, as part of an ISBN. That’s OK. All I’m trying to do
in Query 1 is to reduce the number of bib records that I have to parse using the BLOB functions.
Looking for ‘5820’ is a reasonable way to accomplish this. When I do Query 3, I’ll drop the cases
where there is no 582 tag.

It’s hard to see in design view, but I remembered to set the Unique Values property and to make
this a Make Table query. The table I’m making is called Table 1.

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

8

SELECT DISTINCT BIB_DATA.BIB_ID INTO [Table 1]
FROM BIB_DATA
WHERE (((BIB_DATA.SEQNUM)="1") AND ((BIB_DATA.RECORD_SEGMENT) Like '*5820*'));

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

9

Example B – Query 2

Now I need to use the BLOB functions to get the 582 field. As with Example A, I’m satisfied if I
just get the first 582 field because I’ll see any others that may be present when I look at the first
one.

SELECT [Table 1].BIB_ID, GetFieldRaw(GetBibBlob([bib_id]),"582",1) AS Five82
INTO [Table 2]
FROM [Table 1];

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

10

Example B – Query 3

Now I just need to weed out the records that truly have no 582 field.

SELECT [Table 2].BIB_ID, [Table 2].Five82
FROM [Table 2]
WHERE ((([Table 2].Five82)<>" "));

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

11

Example C

I want a list of all the public notes in the 852 field. Public notes are in 852 $z.

Example C – Query 1

Since all MFHDs have an 852 field, I can’t use the strategy that I used in Example B. Subfield z is
not very common in a MFHD, though. It occurs in 852 and also in the 86x fields. But I think this
is good enough. So I want to search the unparsed MFHDs for a subfield delimiter followed by a
‘z’.

The subfield delimiter is an unprintable character in Access, so I’m going to have to use CHR(31)
to express it. It makes the criterion look complicated, but it works. (BTW, CHR(30) is the MARC
end-of-field character and CHR(29) is the MARC end-of-record character, should you ever need
them.)

It’s hard to see in design view, but I remembered to set the Unique Values property and to make
this a Make Table query. The table I’m making is called Table 1.

SELECT DISTINCT MFHD_DATA.MFHD_ID INTO [Table 1]
FROM MFHD_DATA
WHERE (((MFHD_DATA.RECORD_SEGMENT) Like '*' & Chr(31) & 'z*'));

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

12

Example C – Query 2

Now I want to parse the MFHDs and list the 852$z.

SELECT [Table 1].MFHD_ID, getsubfield(getfieldraw(getMFHDblob([mfhd_id]),'852',1),'z',1) AS
Eight52z INTO [Table 2]
FROM [Table 1];

A Strategy for Using BLOB Functions on Large Databases
CARLI Office - 8/25/2005

13

Example C – Query 3

And now I just need to drop the entries that have nothing in 852$z. I think I’ll sort by the note
too, so I can see if I’ve been entering my notes in a consistent format.

SELECT [Table 2].MFHD_ID, [Table 2].Eight52z
FROM [Table 2]
WHERE ((([Table 2].Eight52z)<>" "))
ORDER BY [Table 2].Eight52z;

